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Abstract

Synchronization of a chaotic rigid body system via adaptive linear balanced feedback control is investigated in this

paper. Firstly, we obtain feedback gains by linear feedback control scheme based on Lyapunov stability theory and

constrained extreme strategy. Next, using the result of the analysis, an adaptive linear balanced feedback controller is

designed for chaos synchronization. The proposed scheme can be implemented without requiring the upper bound of the

trajectory of a chaotic system in advance. Numerical simulations are provided to verify the effectiveness and feasibility of

the designed synchronization schemes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos is a very interesting nonlinear phenomenon and has been studied extensively over the past years in
many physical systems that possess nonlinearity [1,2]. Because its characteristic is extremely sensitive
dependent on initial conditions, chaotic systems are difficult to be synchronized.

Since Pecora and Carroll [3] proposed the PC method for synchronizing two identical chaotic systems with
different initial conditions, chaos synchronization has been widely explored in a variety of fields including
secure communications, optics, chemical and biological systems and so on. In past years, various methods
have been developed for the synchronization of chaotic systems such as linear feedback control [4],
backstepping design [5], active control [6], nonlinear control [7], adaptive control [8–14], etc. In some control
schemes, it is essential to know the upper bounds of the trajectory of a chaotic system in advance. In a
practical situation, the values of these upper bounds are unknown. Hence, a modified controller for a chaos
synchronization system without predetermining the upper bound of system states is an important problem.

In this paper, a new approach combining both linear balanced feedback gain and adaptive controller is
proposed. Based on the linear feedback scheme and extreme approach, the roughly balanced feedback gains of
the system can be obtained analytically and the convergent rate of state error dynamics is roughly balanced
with respect to each state error. Next, to implement this adaptive balanced feedback gain, an adaptation law is
adopted to estimate the upper bound of the trajectory of the chaotic system. This work will provide a detailed
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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design process for chaos synchronization later. A rigid body chaotic system is demonstrated as an example to
show the effectiveness of the proposed method.

Euler’s rigid body system with three quadratic nonlinear terms is a simple and important three-
dimensional autonomous system in classical mechanics. For certain linear feedback gains, Euler’s rigid
body system has two strange attractors [15] and two-scroll chaotic attractors [16]. In addition, Ref. [17]
presents another three-dimensional autonomous chaotic system, which can display two- and four-scroll
attractors. The foregoing two systems are equivalent representations of the system if state transformation
exists. By state transformation, Euler’s rigid body can transfer to the corresponding Liu’s system [17]. Then,
by the addition of appropriate feedback gains, the rigid body system can also generate a four-scroll chaotic
attractor.

2. Design of controller

In this section, a systematic design process of adaptive synchronization of two identical chaotic systems is
provided via linear balanced feedback scheme and adaptation law.

2.1. Nonadaptive design based on linear balanced feedback control

First, we design a controller based on linear feedback control and minimization of the sum of the feedback
gains to synchronize chaotic systems.

Consider a chaotic system in the form of

_x ¼ Axþ FðxÞ; (1)

where xARn is the state vector, AARn� n is a constant matrix, and F(x) is a continuous nonlinear function.
System (1) is considered as a drive system.

From the linear feedback approach, the controlled response system is given by

_y ¼ Ayþ FðyÞ � Kðy� xÞ; (2)

where yARn denotes the state vector of the response system, and K ¼ diagfk1; k2; . . . ; kng 2 Rn�n is a feedback
matrix to be designed later.

The dynamics of synchronization errors can be expressed as

_e ¼ Beþ FðeÞ, (3)

where e ¼ y�xARn is the state error vector, B ¼ A+J�K,

J ¼
qFðyÞ
qy

����
y¼x

2 Rn�n,

is the Jacobian matrix evaluated at y ¼ x.
Construct a Lyapunov function

V ðeÞ ¼ eTPe, (4)

where P is a positive definite diagonal constant matrix.
The derivative of the Lyapunov function along the trajectory of system (3):

_V ¼ _eTPeþ eTP_e ¼ eTðBTPþ PBÞeþ ðFTPeþ eTPFÞ ¼ �eTQep� ETME, (5)

where QARn� n is a positive definite matrix of variables x, and MARn� n is a positive definite constant matrix.
Assume that there exists a positive definite matrix P such as FTPe ¼ eTPF ¼ 0 in this system. In fact, most of
chaotic systems, including Lorenz, Lü, Chen and four-scroll new chaotic systems can be described by this
expression.

Chaos synchronization problem is to design linear feedback gain matrix K to make the matrix M a positive
definite function. Then the states of the response system and drive system are globally asymptotically
synchronized. To implement balanced feedback gains, a method minimizing the sum of the feedback gains is
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adopted to obtain a set of roughly equal control gains. The procedure for designing control gains is described
as follows:

The first step is to solve the linear feedback control gains from the positive definite matrixM. Assume all the
principal minor determinants corresponding to the symmetric matrix M as the following:

Di ¼ Mqr

�� �� ¼ mi40; q; r ¼ 1; 2; . . . ; i; i ¼ 1; 2; . . . ; n. (6)

From Eq. (6), we obtain

ki ¼ Siðm1;m2; . . . ;mqÞ; q ¼ 1; 2; . . . ; i; i ¼ 1; 2; . . . ; n (7)

and

qki

qmi

a0;
qkj

qmi

¼ 0; j ¼ 1; 2; . . . i � 1; i ¼ 1; 2; . . . ; n. (8)

The second step is to minimize the sum of the control gains, i.e., f ¼Min(k1+?+kn). This means that the
control gains are roughly equal, i.e. balanced.

The third step is to study the minima of function of specific variables. Then, write down the necessary
conditions for rendering f a relative maximum or minimum as follows:

qf

qmi

¼ 0; i ¼ 1; 2 . . . ; n. (9)

By solving Eq. (9) corresponding to Eq. (8), the extreme point ðm�1;m
�
2; . . . ;m

�
nÞ is found.

2.2. Modification of a controller based on adaptation law

The controller designed in Section 2.1 requires the knowledge of the system states to estimate the value of
upper bound of the chaotic system. However, in many practical situations, it is difficult to exactly determine
the values of the trajectory in advance. Therefore, adaptive synchronization of two chaotic systems is essential.
In this section, we consider the problem of adaptive synchronization of two identical chaotic systems with
uncertain feedback gains. By using linear balanced feedback control, a relation about feedback gain matrix is
obtained. Then, an adaptive feedback gain replaces this balanced feedback gain matrix. So, from Eq. (2), the
controlled response system can be reconstructed as

_̂y ¼ Aŷþ FðŷÞ � K̂ðŷ� xÞ; (10)

where ŷ 2 Rn denotes the estimated state vector of the response system, and K̂ ¼ diagfk̂1; k̂2; . . . ; k̂ng 2 Rn�n is
an estimated balanced feedback matrix.

The dynamics of adaptive synchronization errors can be expressed as

_s ¼ Bsþ FðsÞ � ~Ks, (11)

where s ¼ ŷ� x ¼ ½s1; s2; . . . ; sn�
T, B ¼ A+J�K,

J ¼
qFðŷÞ
qŷ

����
ŷ¼x

,

is the Jacobian matrix evaluated at ŷ ¼ x, and ~K ¼ K̂� K.
Choose the Lyapunov function candidate

V1ðs; K̂Þ ¼ sTPsþ ð ~KIn�1Þ
TRð ~KIn�1Þ, (12)
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where P ¼ diagfp1; p2; . . . ; png, R ¼ diagfr1; r2; . . . ; rng are positive definite diagonal constant matrices, and

In� 1 ¼ [1,1,y,1]T is an unitary vector. Then, its derivative is

_V 1ðs; K̂Þ ¼ _s
TPsþ sTP_sþ ð _̂KIn�1Þ

TRð ~KIn�1Þ þ ð ~KIn�1Þ
TRð

_̂
KIn�1Þ

¼ sTðBTPþ PBÞsþ ðFTPsþ sTPFÞ � sTð ~K TPþ P ~KÞsþ 2ð ~KIn�1Þ
TRð

_̂
KIn�1Þ

¼ � sTQs� 2sTP ~Ksþ 2ð ~KIn�1Þ
TRð

_̂
KIn�1Þ, ð13Þ

where FTPs ¼ sTPF ¼ 0.
Select

�2sTP ~Ksþ 2ð ~KIn�1Þ
TRð

_̂
KIn�1Þ ¼ 0, (14)

where the estimated value of linear balanced feedback gain matrix is in the form of

K̂ ¼ diagfk̂1; k̂2; . . . ; k̂ng; k̂i ¼ a0i þ a1iX̂ ; i ¼ 1; . . . ; n, (15)

the coefficients a0i and a1i can be specified by linear balanced feedback approach. X̂ is the estimated maximum
upper bound of the absolute values of system states.

Then,

_V 1ðs; X̂ Þ ¼ �s
TQsp� STMS, (16)

where S ¼ ½js1j; js2j; . . . jsnj�
T and M is a positive definite constant function, which is negative semi-definite

function of the state error s and X̂ . By partial stability theory [13], the partial variables s in Eq. (11) are
asymptotically stable about s ¼ 0, the synchronization manifold is stable. Hence the drive and response
systems can be synchronized.

From Eq. (14), we can obtain the adaptation law of the form

_̂
X ¼

Xn

i¼1

pia1is
2
i =
Xn

i¼1

ria
2
1i. (17)

The convergence properties of adaptive control system (11) can be described as the state error s converges to

the origin with a rate of at least g/2 proofed in the Appendix where g ¼ ½lminðMÞ � lmaxð�P ~KÞ�=lmaxðPÞ.
Finally, the convergent rate of the steady-state error s is at least gf/2 where gf ¼ g|t ¼N ¼ lmin(M)/lmax(P). In

addition, the convergence properties of corresponding adaptation law can be described as that
_̂

X converges to
the origin with a rate of at least g where g0pgpgf. When g|t ¼N ¼ gf, the convergent rate of the steady-state

adaptation
_̂

X is the largest. When g|t ¼ 0 ¼ g0, the convergent rate of the initial adaptation
_̂

X is the smallest.

3. Adaptive synchronization of two identical chaotic systems

In this section, we take a rigid body system to the Liu’s chaotic system [17] to create a four-scroll chaotic
attractor. In addition, adaptive linear balanced feedback control is used to achieve synchronization of two
identical rigid body chaotic systems.

3.1. Equation of motion

Euler’s equations for a rigid body motion with linear feedback control are:

I1 _o1 ¼ ðI2 � I3Þo2o3 þ G1,

I2 _o2 ¼ ðI3 � I1Þo3o1 þ G2,

I3 _o3 ¼ ðI1 � I2Þo1o2 þ G3, ð18Þ

where I1, I2, I3 are the principle moments of inertia with respect to body axes, o1,o2,o3 are the angular
velocities about principle axes fixed at the center of mass and G1,G2,G3 are the three control torque. Without
loss of generality, we assume I34I14I2.
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Let torque feedback matrix G ¼ Hx, where

G ¼

G1

G2

G3

2
64

3
75; H ¼

h11 0 0

0 h22 0

0 0 h33

2
64

3
75; x ¼

o1

o2

o3

2
64

3
75. (19)

By a change of coordinates x ¼ T(x), the state-space model in x ¼ [x1,y1,z1]
T is as follows:

_x1 ¼ ax1 þ d1y1z1,

_y1 ¼ by1 þ d2x1z1,

_z1 ¼ cz1 þ d3x1y1, ð20Þ

where d1o0, d240, d340 and

x ¼ TðxÞ ¼

l1o1

l2o2

l3o3

2
64

3
75;

l21
l22
l23

2
64

3
75 ¼

ðI3 � I1ÞðI1 � I2Þ=ðd2d3I2I3Þ

ðI1 � I2ÞðI2 � I3Þ=ðd1d3I1I3Þ

ðI2 � I3ÞðI3 � I1Þ=ðd1d2I1I2Þ

2
64

3
75; H ¼

I1a 0 0

0 I2b 0

0 0 I3c

2
64

3
75. (21)

After this state transformation, a rigid body motion with appropriate feedback gains can generate four-
scroll chaotic attractors. For example, I1 ¼ 2I0, I2 ¼ I0, I3 ¼ 3I0, d1 ¼ �1, d2 ¼ 1, d3 ¼ 1, and a ¼ 0.5,
b ¼ �10, c ¼ �4, we obtain x1 ¼

ffiffiffi
3
p

o1=3, x2 ¼
ffiffiffi
3
p

o2=3, x3 ¼ o3, and h11 ¼ I0, h22 ¼ �10I0, h33 ¼ �12I0.
Now, for system (18), one can observe in simulation a four-scroll chaotic attractor as shown in Fig. 1.
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Fig. 1. The four-scroll chaotic attractor of a rigid body motion with linear feedback control in x-space at h11 ¼ I0, h22 ¼ �10I0,

h33 ¼ �12I0.
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3.2. Adaptive control

Let us consider four-scroll chaotic system (20) as the drive system and its controlled response system is
described as

_x2 ¼ ax2 þ d1y2z2 � k1ðx2 � x1Þ,

_y2 ¼ by2 þ d2x2z2 � k2ðy2 � y1Þ,

_z2 ¼ cz2 þ d3x2y2 � k3ðz2 � z1Þ. ð22Þ

Subtracting Eq. (20) from Eq. (22), we can obtain the error dynamics in the form of

_e ¼ Beþ FðeÞ, (23)

where

B ¼

a� k1 d1z1 d1y1

d2z1 b� k2 d2x1

d3y1 d3x1 c� k3

2
64

3
75; FðeÞ ¼

d1e2e3

d2e1e3

d3e1e2

2
64

3
75.

Construct a Lyapunov function

V ¼ eTPe, (24)

where P ¼ diagfp1; p2; p3g is a positive definite matrix.
The derivative of the Lyapunov function along the trajectory of system (23):

_V ¼ _eTPeþ eTP_e ¼ eTðBTPþ PBÞeþ ðFTPeþ eTPFÞ ¼ �eTQp� ETME, (25)

where FTPe ¼ eTPF ¼ 0, E ¼ [|e1||e2||e3|]
T, U1, U2, U3 are the upper bounds of the absolute values of

p1d1x1, p2d2y1, p3d3z1 respectively, and

Q ¼

2ðk1 � aÞp1 p3d3z1 p2d2y1

p3d3z1 2ðk2 � bÞp2 p1d1x1

p2d2y1 p1d1x1 2ðk3 � cÞp3

2
64

3
75; M ¼

2ðk1 � aÞp1 �U3 �U2

�U3 2ðk2 � bÞp2 �U1

�U2 �U1 2ðk3 � cÞp3

2
64

3
75.

Obviously, to ensure that the origin of error system (23) is asymptotically stable, the matrix M should be
positive definite. By Sylvester’s theorem, all principal minors of M are strictly positive, i.e., a suitable linear
feedback gain matrix K can be chosen if the following conditions hold:

k1 ¼ aþm1=ð2p1Þ,

k2 ¼ bþ ðm2 þU2
3Þ=ð2m1p2Þ,

k3 ¼ cþ ½m1m3 þ ðm1U1 þU3U2Þ
2
þm2U2

2�=ð2m1m2p3Þ. (26)

where m1,m2,m3 are positive constants, U1 ¼ jp1d1jUx, U2 ¼ jp2d2jUy, U3 ¼ jp3d3jUz; Ux, Uy and Uz are the
upper bounds of the absolute values of variables x1, y1 and z1, respectively.

Remark. Define X is the maximum upper bound of the absolute values of variables x1, y1 and z1, then
U1 ¼ jp1d1jX , U2 ¼ jp2d2jX , U3 ¼ jp3d3X , where X can be specified by solving Eq. (20).

To obtain balanced feedback gains, a method minimizing the sum of the feedback gains is presented as
follows. The minimization of the functional f ¼Minfk1 þ k2 þ k3g is required. From Eq. (8) qk3=qm3a0,
qkj=qm3 ¼ 0, j ¼ 1,2, we know that the necessary condition qf =qm3 ¼ 0 fails to exist. Thus, it may happen
that an extreme value is taken on at a boundary point, i.e., m3 ¼ 2�p3m2; �! 0þ.

In a case study, a set of parameters of the four-scroll chaotic system is defined by d1 ¼ �1, d2 ¼ d3 ¼ 1,
a40, bo0, co0, and assuming that p1 ¼ p0, p2 ¼ p3 ¼ p0/2. Thus, we obtain U1 ¼ p0X, U2 ¼ 0.5p0X,
U3 ¼ 0.5p0X.
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By solving the minimization of the functional f ¼Minfk1 þ k2 þ k3g, we can obtain linear balanced
feedback gains. If f m1

¼ 0; f m2
¼ 0, and f m1m1

40; f m1m1
f m2m2

4f 2
m1m2

at a point pðm�1;m
�
2Þ, then at that point

f has a relative minimum. With

f ðk1; k2; k3Þ ¼ k1 þ k2 þ k3 ¼ f ðm1;m2; 0
þÞ, (27)

the necessary conditions f m1
¼ f m2

¼ 0 at ðm�1;m
�
2Þ become

f m1
¼ �ð�8m2

1m2 þ 8p2
0X 2m2 þ 16m2

2 � 16p2
0X 2m2

1 þ p4
0X 4Þ=ð16p0m

2
1m2Þ ¼ 0,

f m2
¼ �ð�16m2

2 þ 16p2
0X 2m2

1 þ 8p3
0X 3m1 þ p4

0X 4Þ=ð16p0m1m
2
2Þ ¼ 0, (28)

from which there follows:

m�1 ¼
ffiffiffi
2
p

p0X40; m�2 ¼ ð4
ffiffiffi
2
p
þ 1Þp2

0X 2=440 (29)

and

f m1m1
� 1:56=ðp2

0X Þ40; f m1m1
f m2m2

� f 2
m1m2
� 0:6=ðp6

0X
4Þ40. (30)

Thus, the corresponding minimum sum of control gains is

Minfk1 þ k2 þ k3g ¼ ðaþ bþ c0Þ þ ð
ffiffiffi
2
p
þ 2ÞX ; i:e:, (31)

k1 ¼ aþ
ffiffiffi
2
p

X=2; k2 ¼ bþ ð
ffiffiffi
2
p

=4þ 1ÞX ; k3 ¼ c0 þ ð
ffiffiffi
2
p

=4þ 1ÞX ,

where c0 ¼ cþ �; �! 0þ.
To implement the adaptive controller, the adaptation law (17) is adopted and is rewritten as

_̂
X ¼ ðp1a11s21 þ p2a12s22 þ p3a13s23Þ=ðr1a2

11 þ r2a2
12 þ r3a2

13Þ. (32)

where p1 ¼ p0, p2 ¼ p3 ¼ p0/2, a11 ¼
ffiffiffi
2
p

=2; a12 ¼ a13 ¼
ffiffiffi
2
p

=4þ 1, and assuming that r1 ¼ sp1, r2 ¼ sp2,
r3 ¼ sp3.
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Fig. 2. Feedback gains k1(–), k2(– –), k3(–.) versus X from Eq. (31).
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4. Numerical results

The numerical simulations are carried out as shown in Figs. 1–6. A rigid body motion with certain feedback
gains displays a four-scroll chaotic attractor in x-space, as depicted in Fig. 1. In Fig. 2, it shows the analytical
results of the feedback gains k1, k2 and k3 versus X from Eq. (31) by the Lyapunov stability theory and
extreme scheme. The initial states of the drive system (20), response system (22) and adaptive equation (32) are
x1(0) ¼ 1, y1(0) ¼ 1, z1(0) ¼ 1, x2(0) ¼ �10, y2(0) ¼ �17, z2(0) ¼ 15, and X̂ ð0Þ ¼ 0, respectively. The states of
four-scroll chaotic attractor are bounded and satisfy the inequalities: �29.7oxo28.5; �21oyo22.1 and
�26.4ozo22.2. Choosing the maximum upper bound as X ¼ 30 and the associated feedback gains as
K ¼ (k1,k2,k3) ¼ (21,.71,30.61,36.61), one can achieve chaos synchronization at t ¼ 1 with state errors
(e1,e2,e3) ¼ �(9,0.015,0.015)� 10�9 as shown in Fig. 3.

Fig. 4 displays the time response of states x1, y1, z1 for the drive system and the states x2, y2, z2 for the
response system with adaptive control. The dynamics of adaptive synchronization errors for the drive system
and response system is shown in Fig. 5. The control is activated at t ¼ 3 and the maximum adaptive

synchronization error is jsijmax ¼ 0:68� 10�10. As shown in Fig. 6, the corresponding estimated linear

balanced feedback gains and maximum upper bound are ðk̂1; k̂2; k̂3Þ ¼ ð9:4703; 7:1711; 13:1711Þ, and

X̂ ¼ 12:6860. The above results show that adaptive synchronization is achieved successfully.
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Fig. 3. Synchronization errors of two identical four-scroll chaotic systems with feedback gains (21.71, 30.61, 36.61) from Eq. (31) at

X ¼ 30.
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5. Conclusion

This paper demonstrates that a rigid body motion with linear feedback control can generate a four-scroll
chaotic attractor and presents a method to design an adaptive linear balanced feedback controller for chaos
synchronization of two four-scroll chaotic systems without predetermining the upper bound of system states.
Based on the Lyapunov stability theory, an adaptive controller is designed for estimating balanced feedback
gains and the maximum upper bound of system states. Furthermore, the convergent rates of the steady-state

error s and the steady-state adaptation
_̂
X are derived at least gf/2 and gf, respectively. Finally, numerical

experiment shows the effectiveness of the proposed method.
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Appendix

The following fact and lemma are needed to derive the main result.
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Fact. For symmetric matrix P and any vector s, the following inequality holds:

lminðPÞs
TspsTPsplmaxðPÞs

Ts, (A.1)

where lmin( � ) denotes the smallest eigenvalue of given matrix and lmax( � ) the largest.

Lemma. If a real function W(t) satisfies the inequality

_W ðtÞ þ aW ðtÞp0, (A.2)

where a is a real number. Then,

W ðtÞpW ð0Þ e�at. (A.3)

Now let us evaluate the convergence rate of adaptive control system (11) based on the Lyapunov analysis.
From Eqs. (13) and (14), we have

_V1ðs; K̂Þ ¼
d

dt
ðsTPsÞ þ 2ð ~KIn�1Þ

TRð
_̂
KIn�1Þ ¼

d

dt
ðsTPsÞ þ 2sTP ~Ks ¼ �sTQsp� sTMs. (A.4)

Thus,

d

dt
ðsTPsÞp� sTMs� 2sTP ~Ksp� lminðMÞs

Tsþ lmaxð�P ~KÞs
Ts

¼ �½lminðMÞ � lmaxð�P ~KÞ�fs
T½lmaxðPÞI�sÞg=lmaxðPÞp� gðsTPsÞ, ðA:5Þ

where g ¼ ½lminðMðX ÞÞ � lmaxð�P ~KÞ�=lmaxðPÞ. According to the lemma, Eq. (A.5) means that
sTPspV 2ð0Þ e

�gt where V2ð0Þ ¼ ðs
TPsÞt¼0. This, together with the fact sTPsXlminðPÞjjsðtÞjj

2, implies that
the state error s converges to the origin with a rate of at least g/2. Finally, the convergent rate of the steady-
state error s is at least gf/2 where gf ¼ gjt¼1 ¼ lminðMðX ÞÞ=lmaxðPÞ.

Since the adaptation law is

_̂
X ¼

Xn

i¼1

pia1is
2
i

,Xn

i¼1

ria
2
1i ¼

Xn

i¼1

pia1is
2
i

,
s
Xn

i¼1

pia
2
1i

 !
, (A.6)

where ri ¼ spi, X̂ is an increasing function of t. Therefore, the final estimated upper bound approaches to the
upper bound of system states i.e., X̂ f ¼ X̂ t¼1 ¼ XXX̂ ðtÞ.

From Eq. (15), we have ~K ¼ K̂� K ¼ diagf ~k1; ~k2; . . . ; ~kng, ~ki ¼ a1iðX̂ � X Þ i.e., that ~K is a negative definite
matrix. Then,

lmaxð�P ~KÞ ¼ lmaxð�diagfpia1iðX̂ � X ÞgÞ ¼ ðpia1iÞmaxðX � X̂ Þ, (A.7)

g ¼ ½lminðMÞ � lmaxð�P ~KÞ�=lmaxðPÞ ¼ a1 � a2ðX � X̂ Þ, (A.8)

g0 ¼ gjt¼0 ¼ a1 � a2ðX f � X̂ 0Þ, (A.9)

where a1 ¼ gf ¼ lminðMÞ=lmaxðPÞ, a2 ¼ ðpia1iÞmax=lmaxðPÞ.

Let b ¼ ða1iÞmax=
Pn

i¼1pia
2
1i. Then, the adaptation law Eq. (A.6) is

_̂
Xpðb=sÞ

Xn

i¼1

pis
2
i ¼ ðb=sÞs

TPspðb=sÞV2ð0Þ expð�gtÞ. (A.10)

The convergence properties of corresponding adaptation law can be described as that
_̂

X converges to the

origin with a rate of at least g where g0pgpgf . When gjt¼1 ¼ gf , the convergent rate of the steady-state

adaptation
_̂
X is the largest. When gjt¼0 ¼ g0, the convergent rate of the initial adaptation

_̂
X is the smallest.
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